Final Exam S1 Computer Architecture

Duration: 1 hr. 30 min.

Last name: Group: First name: Group:	Last name:	. First name:	Group:
--------------------------------------	------------	---------------	--------

Write answers only on the worksheet. Do not show any calculation unless you are explicitly asked. Do not use a pencil or red ink.

Exercise 1 (2 points)

Convert the following numbers from the source form into the destination form. Do not write down the result in a fraction or a power form (e.g. write down 0.25 and not $\frac{1}{4}$ or 2^{-2}).

Number to Convert	Source Form	Destination Form	Result
101011011.01011	Binary	Decimal	
B09.58	Hexadecimal	Decimal	
999	Decimal	Base 9	
3245.43	Base 8	Hexadécimale	

Exercise 2 (5 points)

Perform the following 8-bit binary operations (the two operands and the result are 8 bits wide). Then, convert the result into unsigned and signed decimal values. If an overflow occurs, write down 'ERROR' instead of the decimal value.

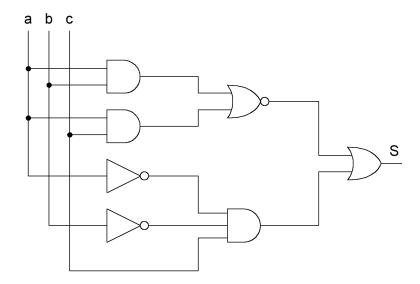
Onevetien	Dinagr Dagult	Decimal Value			
Operation	Binary Result	Unsigned	Signed		
11000111 + 10000101					
01010110 - 11110101					
00101110 - 10101100					
11010001 + 00001010					
01101011 - 01001000					

Final Exam S1

Exercise 3 (5 points)

According to the truth table, complete the Karnaugh maps below (<u>draw also the circles</u>). Then, give the most simplified expression for W, X, Y and Z (do not simplify by using the EXCLUSIVE-OR operator). **No points will be given to an expression if its Karnaugh map is wrong.** Note that when $DCBA > 1001_2$, then W, X, Y and Z are undefined.

D	С	В	Α	W	X	Y	Z
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1


			В	A					В	Α	
	W	00	01	11	10		X	00	01	11	10
	00						00				
DC	01					DC	01				
DC	11					DC	11				
	10						10				
	w =						X =				
			В	A					В	A	
	Y	00	B 01	A 11	10		Z	00	01	A 11	10
	Y 00	00			10		Z 00	00			10
D.C.		00			10	DC.		00			10
DC	00	00			10	DC	00	00			10
DC	00	00			10	DC	00	00			10

Finally, simplify *Y* by using the EXCLUSIVE-OR operator:

Final Exam S1 2/4

Exercise 4 (3 points)

We want to simplify the following circuit diagram:

1. Without any simplifications, give the *S* output in terms of *a*, *b* and *c*.

S =

2. Give the most simplified expression of *S*.

S =

3. From the most simplified expression, draw a new circuit diagram by using three NOT gates, one two-input AND gate and one two-input OR gate.

Final Exam S1 3/4

Let us consider the three following expressions:

$$S1 = \overline{(A + \overline{B} + C).(A + \overline{C}).(\overline{A} + \overline{B})}$$

$$S2 = A.B.C + A.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + A.\overline{B}.C$$

$$S3 = A \oplus (B.\overline{C})$$

1. Give the most simplified expression of *S1*. The result must be given as a sum of products (without parentheses).

S1 =

2. Write down the minterm canonical form of *S1*.

S1 =

3. Write down the maxterm canonical form of *S2*.

S2 =

4. Is it true that S2 = S3? (Answer "Yes" or "No")

5. Determine the *m* and *n* integers so that the following identity is true: $2^m - 2^n = 4064$

m =

n=

Feel free to use the blank space below if you need to: