Key to Final Exam S1 Computer Architecture

Duration: 1 hr. 30 min.

Last name: \qquad First name: \qquad Group: \qquad

Write answers only on the worksheet. Do not show any calculation unless you are explicitly asked. Do not use a pencil or red ink.

Exercise 1 (2 points)

Convert the following numbers from the source form into the destination form. Do not write down the result in a fraction or a power form (e.g. write down 0.25 and not $1 / 4$ or 2^{-2}).

Number to Convert	Source Form	Destination Form	Result
101011011.01011	Binary	Decimal	$\mathbf{3 4 7 . 3 4 3 7 5}$
B09.58	Hexadecimal	Decimal	$\mathbf{2 8 2 5 . 3 4 3 7 5}$
999	Decimal	Base 9	$\mathbf{1 3 3 0}$
3245.43	Base 8	Hexadécimale	$\mathbf{6 A 5 . 8 C}$

Exercise 2 (5 points)

Perform the following 8 -bit binary operations (the two operands and the result are 8 bits wide). Then, convert the result into unsigned and signed decimal values. If an overflow occurs, write down 'ERROR' instead of the decimal value.

Operation	Binary Result	Decimal Value	
		Signed	
$11000111+10000101$	01001100	ERROR	ERROR
$01010110-11110101$	01100001	ERROR	$\mathbf{9 7}$
$00101110-10101100$	10000010	ERROR	ERROR
$11010001+00001010$	11011011	219	$\mathbf{- 3 7}$
$01101011-01001000$	00100011	$\mathbf{3 5}$	$\mathbf{3 5}$

Exercise 3 (5 points)

According to the truth table, complete the the Karnaugh maps below (draw also the circles). Then, give the most simplified expression for W, X, Y and Z (do not simplify by using the EXCLUSIVE-OR operator). No points will be given to an expression if its Karnaugh map is wrong. Note that when $D C B A>1001_{2}$, then W, X, Y and Z are undefined.

\mathbf{D}	\mathbf{C}	\mathbf{B}	\mathbf{A}	\mathbf{W}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1

DC | \mathbf{W} | $\mathbf{0 0}$ | $\mathbf{0 1}$ | $\mathbf{1 1}$ | $\mathbf{1 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 0}$ | 0 | 0 | 0 | 0 |
| $\mathbf{0 1}$ | 0 | 1 | 1 | 1 |
| $\mathbf{1 1}$ | Φ | Φ | Φ | Φ |
| $\mathbf{1 0}$ | 1 | 1 | Φ | Φ |

$\mathbf{w}=\mathrm{D}+\mathrm{C} . \mathrm{A}+\mathrm{C} . \mathrm{B}$
BA

DC | \mathbf{Y} | $\mathbf{0 0}$ | $\mathbf{0 1}$ | $\mathbf{1 1}$ | $\mathbf{1 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 0}$ | 0 | 0 | 0 | 1 |
| $\mathbf{0 1}$ | 0 | 0 | 1 | 0 |
| $\mathbf{1 1}$ | Φ | Φ | Φ | Φ |
| $\mathbf{1 0}$ | 0 | 0 | Φ | Φ |

$\mathbf{Y}=\mathrm{C} \cdot \mathrm{B} \cdot \mathrm{A}+\overline{\mathrm{C}} \cdot \mathrm{B} \cdot \overline{\mathrm{A}}$

$\mathbf{B A}$						
\mathbf{X} $\mathbf{0 0}$ $\mathbf{0 1}$ $\mathbf{1 1}$ $\mathbf{1 0}$ $\mathbf{0 0}$ 0 0 1 0 $\mathbf{0 1}$ 1 0 0 0 $\mathbf{1 1}$ Φ Φ Φ Φ $\mathbf{1 0}$ 1 1 Φ Φ						

$\mathbf{X}=\mathrm{D}+\mathrm{C} \cdot \overline{\mathrm{B}} \cdot \overline{\mathrm{A}}+\overline{\mathrm{C}} \cdot \mathrm{B} \cdot \mathrm{A}$
BA

DC | \mathbf{Z} | $\mathbf{0 0}$ | $\mathbf{0 1}$ | $\mathbf{1 1}$ | $\mathbf{1 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 0}$ | 0 | 1 | 0 | 0 |
| $\mathbf{0 1}$ | 1 | 0 | 0 | 1 |
| $\mathbf{1 1}$ | Φ | Φ | Φ | Φ |
| $\mathbf{1 0}$ | 0 | 1 | Φ | Φ |

$\mathbf{Z}=\mathrm{C} . \overline{\mathrm{A}}+\overline{\mathrm{C}} \cdot \overline{\mathrm{B}} . \mathrm{A}$

Finally, simplify Y by using the EXCLUSIVE-OR operator:

$$
\mathbf{Y}=\text { C.B.A }+\overline{\mathrm{C}} \cdot \mathrm{~B} \cdot \overline{\mathrm{~A}}=\mathrm{B} \cdot(\mathrm{C} \cdot \mathrm{~A}+\overline{\mathrm{C}} \cdot \overline{\mathrm{~A}})=\mathbf{B} \cdot \overline{\mathbf{C} \oplus \mathbf{A}}
$$

Exercise 4 (3 points)

We want to simplify the following circuit diagram:

1. Without any simplifications, give the S output in terms of a, b and c.

$$
\mathrm{S}=\overline{\mathbf{a} . \mathrm{b}+\mathrm{a} . \mathrm{c}}+\overline{\mathbf{a}} \overline{\mathrm{b}} . \bar{c}
$$

2. Give the most simplified expression of S.

$$
\mathbf{S}=\overline{\mathbf{a}}+\overline{\mathbf{b}} . \overline{\mathbf{c}}
$$

3. From the most simplified expression, draw a new circuit diagram by using three NOT gates, one twoinput AND gate and one two-input OR gate.

Exercise 5 (5 points)

Let us consider the three following expressions:
$\mathrm{S} 1=\overline{(\mathrm{A}+\overline{\mathrm{B}}+\mathrm{C}) \cdot(\mathrm{A}+\overline{\mathrm{C}}) \cdot(\overline{\mathrm{A}}+\overline{\mathrm{B}})}$
$\mathrm{S} 2=\mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C}+\mathrm{A} \cdot \overline{\mathrm{B}} \cdot \overline{\mathrm{C}}+\overline{\mathrm{A}} \cdot \mathrm{B} \cdot \overline{\mathrm{C}}+\mathrm{A} \cdot \overline{\mathrm{B}} \cdot \mathrm{C}$
$\mathrm{S} 3=\mathrm{A} \oplus(\mathrm{B} . \overline{\mathrm{C}})$

1. Give the most simplified expression of $S 1$. The result must be given as a sum of products (without parentheses).

S1 $=\mathbf{B}+\mathbf{A} . \mathbf{C}$
2. Write down the minterm canonical form of S1.
$\mathbf{S 1}=\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}+\mathbf{A} \cdot \mathbf{B} \cdot \overline{\mathrm{C}}+\overline{\mathbf{A}} \cdot \mathrm{B} \cdot \mathrm{C}+\overline{\mathbf{A}} \cdot \mathbf{B} \cdot \overline{\mathrm{C}}+\overline{\mathbf{A}} \cdot \overline{\bar{B}} \cdot \mathbf{C}$
3. Write down the maxterm canonical form of S2.
$\mathbf{S} 2=(\mathbf{A}+\mathbf{B}+\mathbf{C}) \cdot(\mathbf{A}+\mathbf{B}+\overline{\mathbf{C}}) \cdot(\mathbf{A}+\overline{\mathrm{B}}+\overline{\mathrm{C}}) \cdot(\overline{\mathrm{A}}+\overline{\mathrm{B}}+\mathbf{C})$
4. Is it true that S2 = S3? (Answer "Yes" or "No")

Yes

5. Determine the m and n integers so that the following identity is true: $2^{m}-2^{n}=4064$
$\mathrm{m}=12$

$$
n=5
$$

Feel free to use the blank space below if you need to:

