S1 – Examination 2 Computer Architecture

Duration: 1 hr 30 min.

Family name: Class: First name:

Answer on the worksheet. Do not show any calculation unless you are explicitly asked. Do not use a pencil or red ink.

Exercise 1 (5 points)

Simplify the expressions below as much as possible. The result must not contain parentheses.

Non-simplified expression	Most simplified expression (no parentheses)
$\overline{(C + D) + (B + \overline{D})}$	
$(B + \overline{D}).(\overline{A} + \overline{D}).(A + D).A.B$	
$\overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{A}.\overline{B}.C.\overline{D} + A.\overline{B}.\overline{C}.\overline{D} + A.\overline{B}.C.\overline{D}$	
$\overline{A.B.}(A.B + C) + A.B.C$	
$(B + \overline{D} + C.B).\overline{\overline{C}.B}.\overline{\overline{C}.B}$	

Exercise 2 (4 points)

1. Write down the minterm canonical form for the following expressions.

Expression	Minterm canonical form	
$A.B.C + A.\overline{B}$		
$(\overline{A} + \overline{C}).(A + C + \overline{D}).B.\overline{C}$		

2. Write down the maxterm canonical form for the following expressions.

Expression	Maxterm canonical form		
$(A + C).(\overline{A} + B + C)$			
A+B.C			

Exercise 3 (6 points)

Complete the Karnaugh maps below (circles included) and give their most simplified expressions. No points will be given to an expression if its Karnaugh map is wrong.

- 3. Let us consider *N*, a 3-bit binary number (*C*, *B*, *A*). *A* is the least significant bit.
 - S1 = 1 when N = 1, 3, 4, 5
 - S2 = 1 when N = 0, 2, 4, 5, 6, 7

- 4. Let us consider *N*, a 4-bit binary number (*D*, *C*, *B*, *A*). *A* is the least significant bit.
 - S3 = 1 when N = 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15
 - S4 = 1 when N = 0, 1, 4, 6, 8, 9, 12, 14
 - S5 = 1 when N = 0, 2, 8, 10 and S5 is undefined when N = 5, 7, 13, 15
 - S6 = 1 when N = 2, 6 and S6 is undefined when N = 0, 1, 4, 5, 8, 9, 12, 13

		BA			
	S 3	00	01	11	10
	00				
DC	01				
DC	11				
	10				

S3 =

DC

S1 – Examination 2

S4	00	01	11	10
00				
01				
11				
10				
S4 =				

BA

11

01

00

10

Exercise 4 (3 points)

Four managers at a company (A, B, C and D) can have access to a safe. They each have a different key. It has been decided that:

- A can only open the safe if at least one of the B or C managers is present.
- B, C and D can only open it if at least two of the other managers are present.
- 1. In the truth table below, we consider that:
 - A = 0 means that A is absent (same for B, C and D).
 - A = 1 means that A is present (same for B, C and D).
 - S = 0 means that the safe cannot be opened.
 - S = 1 means that the safe can be opened.

Complete the truth table.

Α	В	С	D	S
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

2. Give the most simplified expression for S (the result must be given without parentheses).

S =

Exercise 5 (2 points)

We want to design a 1-bit comparator with the following inputs and outputs:

- Inputs: two bits to compare (*A* and *B*).
- Outputs: 'A > B', 'A = B' and 'A < B' with:
 - 'A > B' = 1 if and only if A > B.
 - 'A = B' = 1 if and only if A = B.
 - 'A < B' = 1 if and only if A < B.
- 1. Complete the following truth table.

А	В	'A > B'	'A = B'	'A < B'

2. Give the most simplified expression for the outputs. **If possible, you must use the EXCLUSIF OR operator.**

'A > B' =	'A = B' =	'A < B' =
-----------	-----------	-----------

Feel free to use the blank space below if you need to: