S1 - Key to Examination 2 Computer Architecture

Duration: 1 hr 30 min.

Family name: First name: \qquad Class: \qquad

Answer on the worksheet.
Do not show any calculation unless you are explicitly asked.
Do not use a pencil or red ink.

Exercise 1 (5 points)

Simplify the expressions below as much as possible. The result must not contain parentheses.

Non-simplified expression	Most simplified expression (no parentheses)
$(\mathrm{C}+\mathrm{D})+(\mathrm{B}+\overline{\mathrm{D}})$	0
$(\mathrm{~B}+\overline{\mathrm{D}}) \cdot(\overline{\mathrm{A}}+\overline{\mathrm{D}}) \cdot(\mathrm{A}+\mathrm{D}) \cdot \mathrm{A} \cdot \mathrm{B}$	A.B. $\overline{\mathrm{D}}$
$\overline{\mathrm{A}} \cdot \overline{\mathrm{B}} \cdot \overline{\mathrm{C}} \cdot \overline{\mathrm{D}}+\overline{\mathrm{A}} \cdot \overline{\mathrm{B}} \cdot \mathrm{C} \cdot \overline{\mathrm{D}}+\mathrm{A} \cdot \overline{\mathrm{B}} \cdot \overline{\mathrm{C}} \cdot \overline{\mathrm{D}}+\mathrm{A} \cdot \overline{\mathrm{B}} \cdot \mathrm{C} \cdot \overline{\mathrm{D}}$	$\overline{\mathrm{B}} \cdot \overline{\mathrm{D}}$
$\overline{\text { A.B. }} \cdot(\mathrm{A} \cdot \mathrm{B}+\mathrm{C})+$ A.B.C	C
$(\mathrm{B}+\overline{\mathrm{D}}+\mathrm{C} \cdot \mathrm{B}) \cdot \overline{\overline{\mathrm{C}} \cdot \bar{B} \cdot \bar{C} \cdot \bar{B}}$	$\overline{\mathrm{~B}} \cdot \overline{\mathrm{D}}$

Exercise 2 (4 points)

1. Write down the minterm canonical form for the following expressions.

Expression	Minterm canonical form
A.B.C + A. $\overline{\mathrm{B}}$	A.B.C + A. $\overline{\mathrm{B}} \cdot \mathrm{C}+\mathrm{A} \cdot \overline{\mathrm{B}} \cdot \overline{\mathrm{C}}$
$(\overline{\mathrm{A}}+\overline{\mathrm{C}}) \cdot(\mathrm{A}+\mathrm{C}+\overline{\mathrm{D}}) \cdot \mathrm{B} \cdot \overline{\mathrm{C}}$	$\overline{\text { A.B. }} \overline{\mathrm{C}} \cdot \overline{\mathrm{D}}+$ A.B. $\overline{\mathrm{C}} \cdot \mathrm{D}+\mathrm{A} . B \cdot \overline{\mathrm{C}} \cdot \overline{\mathrm{D}}$

2. Write down the maxterm canonical form for the following expressions.

Expression	Maxterm canonical form
$(A+C) \cdot(\bar{A}+B+C)$	$(A+B+C) \cdot(A+\bar{B}+C) \cdot(\bar{A}+B+C)$
$A+B \cdot C$	$(A+B+C) \cdot(A+B+\bar{C}) \cdot(A+\bar{B}+C)$

Exercise 3 (6 points)

Complete the Karnaugh maps below (circles included) and give their most simplified expressions. No points will be given to an expression if its Karnaugh map is wrong.
3. Let us consider N, a 3-bit binary number (C, B, A). A is the least significant bit.

- $\mathrm{S} 1=1$ when $\mathrm{N}=1,3,4,5$
- $\mathrm{S} 2=1$ when $\mathrm{N}=0,2,4,5,6,7$

	BA				
	S1	00	01	11	10
	0	0	1	1	0
c	1	1	1	0	0

$\mathbf{S 1}=\overline{\mathbf{C}} \cdot \mathbf{A}+\mathbf{C} \cdot \overline{\mathbf{B}}$

$\mathbf{S} 2=\overline{\mathbf{A}}+\mathbf{C}$
4. Let us consider N, a 4-bit binary number (D, C, B, A). A is the least significant bit.

- $\mathrm{S} 3=1$ when $\mathrm{N}=0,1,2,3,4,5,6,7,9,11,13,15$
- $\mathrm{S} 4=1$ when $\mathrm{N}=0,1,4,6,8,9,12,14$
- $\mathrm{S} 5=1$ when $\mathrm{N}=0,2,8,10$ and S 5 is undefined when $\mathrm{N}=5,7,13,15$
- $\mathrm{S} 6=1$ when $\mathrm{N}=2$, 6 and S 6 is undefined when $\mathrm{N}=0,1,4,5,8,9,12,13$

BA						
DCS3 $\mathbf{0 0}$ $\mathbf{0 1}$ $\mathbf{1 1}$ $\mathbf{1 0}$ $\mathbf{0 0}$ 1 1 1 1 $\mathbf{0 1}$ 1 1 1 1 $\mathbf{1 1}$ 0 1 1 0 $\mathbf{1 0}$ 0 1 1 0						

$\mathbf{S 3}=\overline{\mathbf{D}}+\mathbf{A}$

BA

DC | S5 | $\mathbf{0 0}$ | $\mathbf{0 1}$ | $\mathbf{1 1}$ | $\mathbf{1 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 0}$ | 1 | 0 | 0 | 1 |
| $\mathbf{0 1}$ | 0 | Φ | Φ | 0 |
| $\mathbf{1 1}$ | 0 | Φ | Φ | 0 |
| $\mathbf{1 0}$ | 1 | 0 | 0 | 1 |

$\mathbf{S 5}=\overline{\mathbf{C}} \cdot \overline{\mathbf{A}}$

DC	BA				
	S4	00	01	11	10
	00	1	1	0	0
	01	1	0	0	1
	11	1	0	0	1
	10	1	1	0	0

$\mathbf{S 4}=\overline{\mathbf{C}} \cdot \overline{\mathbf{B}}+\mathbf{C} \cdot \overline{\mathbf{A}}$

BA

DC | S6 | $\mathbf{0 0}$ | $\mathbf{0 1}$ | $\mathbf{1 1}$ | $\mathbf{1 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 0}$ | Φ | Φ | 0 | 1 |
| $\mathbf{0 1}$ | Φ | Φ | 0 | 1 |
| $\mathbf{1 1}$ | Φ | Φ | 0 | 0 |
| $\mathbf{1 0}$ | Φ | Φ | 0 | 0 |

S6 = D. \mathbf{A}

Exercise 4 (3 points)

Four managers at a company (A, B, C and D) can have access to a safe. They each have a different key. It has been decided that:

- A can only open the safe if at least one of the B or C managers is present.
- B, C and D can only open it if at least two of the other managers are present.

1. In the truth table below, we consider that:

- $A=0$ means that A is absent (same for B, C and D).
- $A=1$ means that A is present (same for B, C and D).
- $\mathrm{S}=0$ means that the safe cannot be opened.
- $\mathrm{S}=1$ means that the safe can be opened.

Complete the truth table.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{S}
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2. Give the most simplified expression for S (the result must be given without parentheses).
S = A.B + A.C + B.C.D

Exercise 5 (2 points)

We want to design a 1-bit comparator with the following inputs and outputs:

- Inputs: two bits to compare (A and B).
- Outputs: ' $\mathrm{A}>\mathrm{B}$ ', ' $\mathrm{A}=\mathrm{B}$ ' and ' $\mathrm{A}<\mathrm{B}$ ' with:
- ' $A>B$ ' $=1$ if and only if $A>B$.
- ' $\mathrm{A}=\mathrm{B}$ ' = 1 if and only if $\mathrm{A}=\mathrm{B}$.
- ' $\mathrm{A}<\mathrm{B}$ ' = 1 if and only if $\mathrm{A}<\mathrm{B}$.

1. Complete the following truth table.

\mathbf{A}	\mathbf{B}	${ }^{\prime} \mathbf{A}>\mathbf{B}$	${ }^{\prime} \mathbf{A}=\mathbf{B}$	
	$\mathbf{A}<\mathbf{B}$			
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

2. Give the most simplified expression for the outputs. If possible, you must use the EXCLUSIF OR operator.

'A $>\mathbf{B}$ ' $=\mathbf{A} . \overline{\mathbf{B}}$	'A $=\mathbf{B}$ ' $=\overline{\mathbf{A} \oplus \mathbf{B}}$	'A $<\mathbf{B}$ ' $=\overline{\mathbf{A}} . \mathbf{B}$

Feel free to use the blank space below if you need to:

