S1 – Key to Examination 2 Computer Architecture

Duration: 1 hr 30 min.

Family name: Cla	ass:
------------------	------

Answer on the worksheet.

Do not show any calculation unless you are explicitly asked. Do not use a pencil or red ink.

Exercise 1 (5 points)

Simplify the expressions below as much as possible. The result must not contain parentheses.

Non-simplified expression	Most simplified expression (no parentheses)
$\overline{(C+D)+(B+\overline{D})}$	0
$(B + \overline{D}).(\overline{A} + \overline{D}).(A + D).A.B$	$A.B.\overline{D}$
$\overline{A.B.C.D} + \overline{A.B.C.D} + A.\overline{B.C.D} + A.\overline{B.C.D}$	$\overline{\mathrm{B.D}}$
$\overline{A.B.}(A.B+C) + A.B.C$	С
$(B + \overline{D} + C.B).\overline{\overline{C}.B}.\overline{C.B}$	$\overline{\mathrm{B.D}}$

Exercise 2 (4 points)

1. Write down the minterm canonical form for the following expressions.

Expression	Minterm canonical form	
$A.B.C + A.\overline{B}$	$A.B.C + A.\overline{B}.C + A.\overline{B}.\overline{C}$	
$(\overline{A} + \overline{C}).(A + C + \overline{D}).B.\overline{C}$	$\overline{A}.B.\overline{C}.\overline{D} + A.B.\overline{C}.D + A.B.\overline{C}.\overline{D}$	

2. Write down the maxterm canonical form for the following expressions.

Expression	Maxterm canonical form	
$(A + C).(\overline{A} + B + C)$	$(A + B + C).(A + \overline{B} + C).(\overline{A} + B + C)$	
A+B.C	$(A + B + C).(A + B + \overline{C}).(A + \overline{B} + C)$	

Exercise 3 (6 points)

Complete the Karnaugh maps below (circles included) and give their most simplified expressions. No points will be given to an expression if its Karnaugh map is wrong.

- 3. Let us consider *N*, a 3-bit binary number (*C*, *B*, *A*). *A* is the least significant bit.
 - S1 = 1 when N = 1, 3, 4, 5
 - S2 = 1 when N = 0, 2, 4, 5, 6, 7

		BA					
	S1	00	01	11	10		
•	0	0	1	1	0		
C	1	1	1	0	0		

$$S1 = \overline{C}.A + C.\overline{B}$$

	BA						
	S2	00	01	11	10		
C	0	1	0	0	1		
C	1	1	1	1	1		

$$S2 = \overline{A} + C$$

- 4. Let us consider *N*, a 4-bit binary number (*D*, *C*, *B*, *A*). *A* is the least significant bit.
 - S3 = 1 when N = 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15
 - S4 = 1 when N = 0, 1, 4, 6, 8, 9, 12, 14
 - S5 = 1 when N = 0, 2, 8, 10 and S5 is undefined when N = 5, 7, 13, 15
 - S6 = 1 when N = 2, 6 and S6 is undefined when N = 0, 1, 4, 5, 8, 9, 12, 13

		BA							
	S3	S3 00 01 11 10							
D.C.	00	1	1	1	1				
	01	1	1	1	1_				
DC	11	0	1	1	0				
	10	0	1	1	0				

$$S3 = \overline{D} + A$$

S4	00	01	11	10		
00	1	1	0	0		
01	1	0	0	1		
11	1	0	0	1		
10	1	1	0	0		

BA

$$S4 = \overline{C}.\overline{B} + C.\overline{A}$$

DC

DC

	BA				
S 5	00	01	11	10	
00	1	0	0	1	
01	0	Ф	Ф	0	
11	0	Φ	Φ	0	
10	1	0	0	1	

$$S5 = \overline{C}.\overline{A}$$

	BA					
S6	00	01	11	10		
00	Ф	Φ	0	1		
01	Φ	Φ	0	1		
11	Ф	Φ	0	0		
10	Ф	Φ	0	0		

$$S6 = \overline{D}.\overline{A}$$

DC

Exercise 4 (3 points)

Four managers at a company (A, B, C and D) can have access to a safe. They each have a different key. It has been decided that:

- A can only open the safe if at least one of the B or C managers is present.
- B, C and D can only open it if at least two of the other managers are present.
- 1. In the truth table below, we consider that:
 - A = 0 means that A is absent (same for B, C and D).
 - A = 1 means that A is present (same for B, C and D).
 - S = 0 means that the safe cannot be opened.
 - S = 1 means that the safe can be opened.

Complete the truth table.

A	В	C	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2. Give the most simplified expression for S (the result must be given without parentheses).

$$S = A.B + A.C + B.C.D$$

Exercise 5 (2 points)

We want to design a 1-bit comparator with the following inputs and outputs:

- Inputs: two bits to compare (*A* and *B*).
- Outputs: 'A > B', 'A = B' and 'A < B' with:
 - 'A > B' = 1 if and only if A > B.
 - 'A = B' = 1 if and only if A = B.
 - 'A < B' = 1 if and only if A < B.
- 1. Complete the following truth table.

A	В	'A > B'	'A = B'	'A < B'
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

2. Give the most simplified expression for the outputs. **If possible, you must use the EXCLUSIF OR operator.**

$'A > B' = A.\overline{B}$ $'A < B' = \overline{A}.B$	
---	--

Feel free to use the blank space below if you need to: