Chapter 2 Counters

Table of Contents

I. Definitions 2

1. Binary Up Counters 2
2. Binary Down Counters 3
3. Other Types of Counters 4
II. Designing Asynchronous Counters 5
4. Principle 5
5. Divide-by-Two Circuits or Toggle Flip-Flops 5
6. Full-Sequence Counters 7
3.1. Up Counters 7
3.2. Down Counters 10
7. Truncated-Sequence Counters 12
4.1. Up Counters 12
4.2. Down Counters 14
8. Summary 16
III. Designing Synchronous Counters 17
9. Principle. 17
10. Excitation Tables 17
2.1. The Excitation Table of a JK Flip-Flop 18
2.2. The Excitation Table of a D Flip-Flop 18
11. Synchronous Counters Using JK Flip-Flops 19
12. Synchronous Counters Using D Flip-Flops 21

I. Definitions

1. Binary Up Counters

A binary up counter is a sequential circuit with a clock input and an n-bit output. This output represents a natural binary number, which is incremented by one each time the counter is clocked.

We say that an up counter is 'modulo m ' when it counts from $\mathbf{0}$ to $\boldsymbol{m} \mathbf{- 1}$. For instance:

- A modulo-8 up counter counts from 0 to 7.
- A modulo-10 up counter counts from 0 to 9 .
- A modulo-16 up counter counts from 0 to 15.

Example of a modulo-16 up counter:

It is noteworthy that an output (Q_{n}) toggles on each falling edge of the previous output (Q_{n-1}):

- Q1 toggles on each falling edge of $Q 0$.
- Q2 toggles on each falling edge of $Q 1$.
- Q3 toggles on each falling edge of Q2.

Notes:

- A ‘modulo-10 up counter’ can also be called: ‘decade counter', ‘decimal counter’ or 'BCD counter'.
- A 'modulo- m up counter' with $m=2^{n}$ is a 'full-sequence counter'.
- A 'modulo- m up counter' with $m \neq 2^{n}$ is a 'truncated-sequence counter'.

2. Binary Down Counters

A binary down counter is a sequential circuit with a clock input and an n-bit output. This output represents a natural binary number, which is decremented by one each time the counter is clocked.

We say that a down counter is 'modulo m ' when it counts backwards from $\boldsymbol{m}-\mathbf{1}$ to $\mathbf{0}$. For instance:

- A modulo-8 down counter counts backwards from 7 to 0 .
- A modulo-10 down counter counts backwards from 9 to 0 .
- A modulo-16 down counter counts backwards from 15 to 0 .

Example of a modulo-16 down counter:

It is noteworthy that an output (Q_{n}) toggles on each rising edge of the previous output (Q_{n-1}):

- Q1 toggles on each rising edge of $Q 0$.
- Q2 toggles on each rising edge of Q1.
- Q3 toggles on each rising edge of Q2.

Notes:

- A 'modulo-10 down counter’ can also be called: ‘decade down counter’, ‘decimal down counter’ or 'BCD down counter'.
- A 'modulo- m down counter' with $m=2^{n}$ is a 'full-sequence down counter'.
- A 'modulo- m down counter' with $m \neq 2^{n}$ is a 'truncated-sequence down counter'.

3. Other Types of Counters

Actually, a counter can count through any arbitrary sequence. A sequence is not necessarily a natural binary sequence. For instance, a Gray (up) counter counts through the Gray code. A sequence can also be designed to satisfy the special needs of a circuit.

II. Designing Asynchronous Counters

1. Principle

In a binary counter (up or down), the frequency of an output $\left(Q_{n}\right)$ is half the frequency of its previous output (Q_{n-1}):

- The frequency of $Q 1$ is half the frequency of $Q 0$.
- The frequency of Q2 is half the frequency of Q1.
- And so forth.

The frequencies are successively divided by two (see the timing diagram of a binary up counter - $\underline{\text { I. } 1}$ above). This can also be seen in a natural binary sequence:

Q2	Q1	Q0
0	0	$0 \downarrow$
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Therefore, the key principle of a counter is to divide frequencies by two. This can be easily achieved by connecting divide-by-two circuits in series.

Now, we have to understand what a divide-by-two circuit is and how it can be built.

2. Divide-by-Two Circuits or Toggle Flip-Flops

A divide-by-two circuit, commonly called a 'toggle flip-flop', divides the frequency of its input by two. There are several ways to build one; the most common include either a D or a JK flip-flop:

Figure 1

Figure 2

The timing diagrams of these two circuits are identical:

We can associate the toggle flip-flop with the following circuit symbol:

This toggle flip-flop is positive-edge-triggered, but if we use a D or JK negative-edge-triggered flip-flop, we can build a negative-edge-triggered toggle flip-flop. Its circuit symbol and timing diagram are as follows:

D or JK flip-flops usually come with two asynchronous active-low inputs called $\overline{\text { clear }}$ and $\overline{\text { preset }}$ (or $\overline{r e s e t}$ and $\overline{s e t}$). In normal operation, both of these inputs are 1s. When $\overline{\text { preset }}=0, Q$ is set to 1 , and when clear $=0, Q$ is reset to 0 . These inputs are unconditional, that is to say they override every other input of the flip-flop.

Their symbols are as follows:

Therefore, we can add these inputs to our toggle flip-flops:

These preset and clear inputs are not always required. Thus, when we do not need them, we will not represent them on diagrams assuming that they will always be inactive $(\overline{\overline{c l e a r}}=\overline{\text { preset }}=1)$.

3. Full-Sequence Counters

3.1. Up Counters

A full-sequence up counter is an n-bit up counter with a modulo of 2^{n}. It cycles through the natural binary sequence from 0 to $2^{n}-1$.

To design an n-bit up counter, we need n toggle flip-flops. Then, we should connect them in series so that an output $\left(Q_{n}\right)$ toggles on each falling edge of its previous output $\left(Q_{n-1}\right)$.

For instance, to design a 4-bit up counter, we should connect 4 toggle flip-flops in series so that:

- Q1 toggles on each falling edge of $Q 0$.
- Q2 toggles on each falling edge of $Q 1$.
- Q3 toggles on each falling edge of Q2.

If we use negative-edge-triggered flip-flops, this is what the circuit and timing diagrams should look like:

For example, if the toggle flip-flops are made up of JK flip-flops, the circuit diagram is as follows:

Of course, we can also use positive-edge-triggered flip-flops:

The circuit above is still an up counter because:

- Q1 toggles on each rising edge of Q0 (that is to say, on each falling edge of Q0).
- Q2 toggles on each rising edge of $\overline{Q 1}$ (that is to say, on each falling edge of $Q 1$).
- Q3 toggles on each rising edge of $\overline{Q 2}$ (that is to say, on each falling edge of $Q 2$).

It is noteworthy that in an up counter, there is always one bubble on the wire that connects an output (Q_{n} or \bar{Q}_{n}) to the next clock input.

Here is the timing diagram:

For example, if the toggle flip-flops are made up of D flip-flops, the circuit diagram is as follows:

3.2. Down Counters

A full-sequence down counter is an n-bit down counter with a modulo of 2^{n}. It cycles through the natural binary sequence from $2^{n}-1$ to 0 .

To design an n-bit down counter, we need n toggle flip-flops. Then, we connect them in series so that an output $\left(Q_{n}\right)$ toggles on each rising edge of its previous output $\left(Q_{n-1}\right)$.

For instance, to design a 4-bit down counter, we should connect 4 toggle flip-flops in series so that:

- Q1 toggles on each rising edge of $Q 0$.
- Q2 toggles on each rising edge of Q1.
- Q3 toggles on each rising edge of Q2.

If we use positive-edge-triggered flip-flops, this is what the circuit and timing diagrams should look like:

For example, if the toggle flip-flops are made up of D flip-flops, the circuit diagram is as follows:

Of course, we can also use negative-edge-triggered flip-flops:

The circuit above is still a down counter because:

- Q1 toggles on each falling edge of $\overline{Q 0}$ (that is to say, on each rising edge of $Q 0$).
- Q2 toggles on each falling edge of $\overline{Q 1}$ (that is to say, on each rising edge of Q1).
- Q3 toggles on each falling edge of $\overline{Q 2}$ (that is to say, on each rising edge of $Q 2$).

It is noteworthy that in a down counter, there are either two bubbles or none at all on the wire that connects an output (Q_{n} or \bar{Q}_{n}) to the next clock input.

Here is the timing diagram:

For example, if the toggle flip-flops are made up of JK flip-flops, the circuit diagram is as follows:

4. Truncated-Sequence Counters

4.1. Up Counters

A truncated-sequence up counter is an n-bit up counter with a modulo lower than 2^{n}. It cycles through the natural binary sequence from 0 to a value lower than $2^{n}-1$.

The first step in designing a truncated-sequence counter is to build a full-sequence counter. Then, the value of the modulo must be detected and replaced by the value 0 .

For instance, a modulo-11 up counter is a truncated-sequence counter because it requires a 4-bit output, which has 16 combinations, when only 11 are needed. In other words, it cycles through from 0 to 10 instead of cycling through from 0 to 15.

To design it, we have to build a modulo-16 up counter and replace the value 11 by the value 0 :

Mod-16:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Mod-11:	0	1	2	3	4	5	6	7	8	9	10	0	1	2	3	4

The value 11 must be replaced by the value 0 .

To set the 4 -bit output of the counter to 0 , we can use the asynchronous active-low clear inputs ($\overline{\text { clear }}$).

To detect the value 11 we can use a 4 -input NAND gate. The output of the NAND gate is called M :

$M=0$ if and only if $Q_{3: 0}=1011_{2}=11_{10}$.

If we use negative-edge-triggered flip-flops, this is what the circuit diagram should look like:

As soon as the counter reaches $11, M$ is set to 0 . Therefore, the clear inputs become active and the outputs are reset to 0 . Then, M goes back to 1 , the clear inputs become inactive and the counter resumes counting.

The value 11 exists momentarily and will be long enough to reset all the flip-flops to 0 . In practice, the reset pulse lasts a few nanoseconds and is related to the performance of the components.

We can optimize the detection of 11 slightly. It can be noticed that $Q 3=Q 1=Q 0=1$ when the output is either $11(Q 2=0)$ or $15(Q 2=1)$. Since 15 never appears in our sequence, we can conclude that when $Q 3=Q 1=Q 0=1$, the output of the counter is 11 . In other words, the value of $Q 2$ is irrelevant in this case.

After being optimized, here is what the circuit diagram should look like:

4.2. Down Counters

A truncated-sequence down counter is an n-bit down counter with a modulo lower than 2^{n}. It cycles through the natural binary sequence from a value lower than $2^{n}-1$ to 0 .

The first step in designing a truncated-sequence down counter is to build a full-sequence down counter. Then, the maximum value must be detected and replaced by the value of the modulo minus 1 .

For instance, a modulo-11 down counter is a truncated-sequence counter because it requires a 4-bit output, which has 16 combinations, when only 11 are needed. In other words, it cycles through from 10 to 0 instead of cycling through from 15 to 0 .

To design it, we have to build a modulo- 16 down counter and replace the value 15 by the value 10 :

Mod-16:
Mod-11:

10	9	8	7	6	5	4	3	2	1	0	$\mathbf{1 5}$	14	13	12	11
10	9	8	7	6	5	4	3	2	1	0	$\mathbf{1 0}$	9	8	7	6

The value 15 must be replaced by the value 10 .

To set the 4 -bit output of the counter to 10 , we can use the asynchronous active-low preset and clear inputs ($\overline{\text { preset }}$ and $\overline{\text { clear }}$).

To detect the value 15 we can use a 4-input NAND gate. The output of the NAND gate is called M:

$M=0$ if and only if $Q_{3: 0}=1111_{2}=15_{10}$.

If we use positive-edge-triggered flip-flops, this is what the circuit diagram should look like:

As soon as the counter reaches $15, M$ is set to 0 . Therefore, $Q 0$ and $Q 2$ are reset to 0 and $Q 1$ and $Q 3$ are set to 1 ; that is to say the 4 -bit output is set to $10\left(10_{10}=1010_{2}\right)$. Then, M goes back to 1 , the preset and clear inputs become inactive and the down counter resumes counting.

The value 15 exists momentarily and will be long enough to set the 4 -bit output to 10 . In practice, the set and reset pulses last a few nanoseconds and are related to the performance of the components.

We can optimize the detection of 15 slightly. It can be noticed that $Q 3=Q 2=1$ when the output is greater than or equal to 12 . Since 12,13 and 14 never appear in our sequence, we can conclude that when $Q 3=Q 2=1$, the output of the counter is 15. In other words, the values of $Q 0$ and $Q 1$ are irrelevant in this case.

After being optimized, here is what the circuit diagram should look like:

5. Summary

- To design an asynchronous (up or down) counter you have to connect toggle flip-flops in series. The output of the first flip-flop triggers the output of the second flip-flop, the output of the second flip-flop triggers the output of the third flip-flop and so forth. This is why this type of counter is also called a 'rippled counter'.
- In an up counter, an output $\left(Q_{n}\right)$ toggles on each falling edge of the previous output (Q_{n-1}). This can be achieved by connecting Q_{n} or \bar{Q}_{n} to the next clock input so that there is only one bubble on the wire.
- In a down counter, an output (Q_{n}) toggles on each rising edge of the previous output (Q_{n-1}). This can be achieved by connecting Q_{n} or \bar{Q}_{n} to the next clock input so that there are either two bubbles or none at all on the wire.
- To design a truncated-sequence up counter, the value of the modulo must be detected and replaced by 0 .
- To design a truncated-sequence down counter, the maximum value of the n-bit output ($2^{n}-1$) must be detected and replaced by the value of the modulo minus 1.

III. Designing Synchronous Counters

1. Principle

A synchronous counter is made up of several D or JK flip-flops that are all connected to the same clock signal. Therefore, every output changes at the same time.

The inputs and outputs of the flip-flops are connected to a combinational logic circuit, which is designed to generate a particular sequence. Any arbitrary sequence is possible.

For instance, let us take three JK flip-flops:

The outputs of the flip-flops are the inputs of the combinational logic circuit; and the outputs of the combinational logic circuit are the inputs of the flip-flops.

Designing the combinational logic circuit comes down to determining the expressions of its outputs (KO, $J 0, K 1, J 1$, etc.) in terms of its inputs (Q0, Q1, etc.).

To do this, we need to use excitation tables.

2. Excitation Tables

An excitation table displays the input states required to have a given output transition.

2.1. The Excitation Table of a JK Flip-Flop

The excitation table of a JK flip-flop can be deduced from the truth table of a JK flip-flop.

Excitation Table

	$\mathbf{Q (t)}$	$\mathbf{Q (t + 1)}$	\mathbf{J}
(1)	0	0	0
(2)	0	1	1
(3)	1	0	Φ
(4)	1	1	Φ

Truth Table

	C	J	K	Q	
(1)	\uparrow	0	0	q	(4)
(1)	\uparrow	0	1	0	(3)
(2)	\uparrow	1	0	1	(4)
(2)	\uparrow	1	1	$\overline{\mathrm{q}}$	4 (3)

To determine the states of J and K for each line, you have to answer the following question: what could the states of J and K be when the output changes from $Q(t)$ to $Q(t+1)$?

Line (1) : Transition of Q from 0 to 0

- no change $(J=0, K=0)$
- reset to $0 \quad(J=0, K=1)$

Line (2) : Transition of Q from 0 to 1

- toggle	$(J=1, K=1)$
- set to 1	$(J=1, K=0)$

Line (3) : Transition of Q from 1 to 0

- toggle $\quad(J=1, K=1)$
- reset to $0 \quad(J=0, K=1)$

Line (4) : Transition of Q from 1 to 1

- no change $(J=0, K=0)$
- set to $1 \quad(J=1, K=0)$

2.2. The Excitation Table of a D Flip-Flop

The excitation table of a D flip-flop is very easy to obtain because a D flip-flop copies the value from the input D to the output Q.

$\mathbf{Q (t)}$	$\mathbf{Q (t + 1)}$	\mathbf{D}
0	0	0
0	1	1
1	0	0
1	1	1

To determine the state of D for each line, you have to answer the following question: what could the state of D be when the output changes from $Q(t)$ to $Q(t+1)$? Obviously: $Q(t+1)=D$.

3. Synchronous Counters Using JK Flip-Flops

We can design any arbitrary sequence as long as there are no identical combinations.

Let us take the example below:

We want to design a synchronous counter that cycles through the following sequence:

Q2	Q1	Q0
1	0	0
1	0	1
1	1	1
1	1	0
0	1	0
0	1	1
ι		
ι		
ι		

Using the excitation table, we can determine the inputs of the JK flip-flops.

Q2	Q1	Q0	J2	K2	J1	K1	J0	K0
1	0	0	Φ	0	0	Φ	1	Φ
1	0	1	Φ	0	1	Φ	Φ	0
1	1	1	Φ	0	Φ	0	Φ	1
1	1	0	Φ	1	Φ	0	0	Φ
0	1	0	0	Φ	Φ	0	1	Φ
0	1	1	1	Φ	Φ	1	Φ	1

According to the excitation table of a JK flip-flop, when Q0 rises from 0 to 1 , J 0 is 1 and K 0 is either 0 or 1 .

From this table, we can now determine the most simplified expressions of $J 0, K 0, J 1, K 1, J 2$ and $K 2$ in terms of $Q 0, Q 1$ and $Q 2$.

- In an obvious way:
- K0 = Q1
- $\mathbf{J 1}=\mathbf{Q} 0$
- $\mathbf{J} 2=\mathbf{Q} 0$
- Using Karnaugh maps:

Q1 Q0
J0 $\mathbf{0 0}$ $\mathbf{0 1}$ $\mathbf{1 1}$ $\mathbf{1 0}$ $\mathbf{0}$ Φ Φ Φ 1 $\mathbf{1}$ 1 Φ Φ 0

Q1 Q0
K1 $\mathbf{0 0}$ $\mathbf{0 1}$ $\mathbf{1 1}$ $\mathbf{1 0}$ $\mathbf{0}$ Φ Φ 1 0 $\mathbf{1}$ Φ Φ 0 0
K1 = Q0. $\overline{\mathbf{Q 2}}$

Q1 Q0				
K2 $\mathbf{0 0}$ $\mathbf{0 1}$ $\mathbf{1 1}$ $\mathbf{1 0}$ $\mathbf{0}$ Φ Φ Φ Φ $\mathbf{1}$ 0 0 0 1				
K2 = $\overline{\mathbf{Q 0}} . \mathbf{Q 1}$				

Here is what the circuit diagram should look like:

We can use either positive- or negative-edge-triggered flip-flop, depending on which edge we want to synchronize the counter with.

4. Synchronous Counters Using D Flip-Flops

The method of designing a synchronous counter using D flip-flops is very similar to the method using JK flip-flops. You just have to replace the J and K inputs by the D inputs. We can design any arbitrary sequence as long as there are no identical combinations.

Let us take the example below:

We want to design a modulo-8 synchronous counter that cycles through the following sequence:

Q2	Q1	Q0
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
	\leftharpoonup	
	\leftharpoonup	
1	1	0
1	1	1

Using the excitation table, we can determine the inputs of the D flip-flops.

Q2	Q1	Q0	D2	D1	D0
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

According to the excitation table of a D
flip-flop, when Q0 rises from 0 to 1, D0 is 1 .

From this table, we can now determine the most simplified expressions of $D 0, D 1$, and $D 2$ in terms of $Q 0$, Q1 and Q2.

- In an obvious way:
- D0 = Q0
- Using Karnaugh maps:

Q2 | D1 | $\mathbf{0 0}$ | $\mathbf{0 1}$ | $\mathbf{1 1}$ | $\mathbf{1 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | 0 | 1 | 0 | 1 |
| $\mathbf{1}$ | 0 | 1 | 0 | 1 |

D1 $=\overline{\mathbf{Q 0}} . \mathbf{Q 1}+\mathbf{Q 0 .} \overline{\mathbf{Q 1}}$

D2	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0}$	0	0	1	0
$\mathbf{1}$	1	1	0	1

D2 $=\overline{\text { Q2.Q1.Q0 + Q2. } \mathbf{Q 1}+\mathbf{Q 2 .}} \overline{\mathbf{Q 0}}$

These expressions can be simplified once more using EXCLUSIVE OR.

- $\mathbf{D} 1=\mathbf{Q} 0 \oplus \mathbf{Q} 1$

- $\mathrm{D} 2=\overline{\mathrm{Q} 2} \cdot \mathrm{Q} 1 \cdot \mathrm{Q} 0+\mathrm{Q} 2 \cdot(\overline{\mathrm{Q} 1}+\overline{\mathrm{Q} 0})$

$$
\mathrm{D} 2=\overline{\mathrm{Q} 2} \cdot \mathrm{Q} 1 \cdot \mathrm{Q} 0+\mathrm{Q} 2 \cdot(\overline{\mathrm{Q} 1 . \mathrm{Q} 0})
$$

$$
\text { D2 }=\mathbf{Q} 2 \oplus(\mathbf{Q} 1 . Q 0)
$$

Here is what the circuit diagram should look like:

We can use either positive- or negative-edge-triggered flip-flop, depending on which edge we want to synchronize the counter with.

