
David Bouchet – Computer Architecture – EPITA – S2

Chapter 3
Microprocessor Systems

Latest update: 04/03/2024

Table of Contents
I. Introduction...2
II. Memory Devices..3

1. Definitions..3
2. Main Types of Memory Devices..4

2.1. Random-Access Memory (RAM)..4
2.1.1. Static Random-Access Memory (SRAM)..4
2.1.2. Dynamic Random-Access Memory (DRAM)..4

2.2. Read-Only Memory (ROM)...4
2.2.1. Programmable Read-Only Memory (PROM)...5
2.2.2. Erasable Programmable Read-Only Memory (EPROM)...5

3. The Buses...5
3.1. The Address Bus...5
3.2. The Data Bus..6
3.3. The Control Bus..6

3.3.1. Chip Select (CS)...6
3.3.2. Write Enable (WE)..6

4. Connecting Memory Devices...7
4.1. Connecting Memory Devices in Parallel..7
4.2. Connecting Memory Devices in Series..8
4.3. Connecting Memory Devices in Parallel and Series..10

III. Address Decoding...12
1. Introduction..12
2. Linear Address Decoding...14

2.1. The Address Decoder..15
2.2. The Memory Map...15
2.3. Conclusion..16

3. Block Address Decoding..17
3.1. The Address Decoder..18
3.2. The Memory Map...19
3.3. Conclusion..20

4. Memory Mirroring and Redundant Images..21

Chapter 3 – Microprocessor Systems 1/22

David Bouchet – Computer Architecture – EPITA – S2

I. Introduction

A microprocessor system is made up of at least one microprocessor, some memory devices and a variety
of peripherals. The main function of the microprocessor is to control the whole system.

A bus is a collection of wires used to transfer information between components inside a computer. For in-
stance, an 8-bit bus is made up of 8 wires and can transfer 8-bit values.

A microprocessor has three internal buses (an address bus, a data bus and a control bus) that allow it to
communicate with a large range of memory and peripherals. However, interfaces are commonly used to
extend the ability of the microprocessor to communicate with external equipment. Not only can these in-
terfaces provide enough electrical energy to power a lot of memory and peripheral devices, but they also
allow standardizing some external buses that can be used to connect equipment from different makers
(e.g. USB, PCI bus, ISA bus).

Chapter 3 – Microprocessor Systems 2/22

David Bouchet – Computer Architecture – EPITA – S2

II. Memory Devices

1. Definitions

A memory device is made up of electronic components and allows storing digital data in a binary-word
form. A binary word is a binary number expressed in a given number of bits (e.g. a byte is an 8-bit binary
word).

A memory device can be seen as an array of cells. Each cell contains a binary word and can be located by
a unique address number.

For instance, the following memory contains 8 words of 16 bits:

0 462F

1 7F94

2 4A1B

3 2B90

4 C821

5 FFFE

6 23C4

7 3DD8

For example:
• The address 0 contains 462F16.
• The address 4 contains C82116.

A memory device can be defined by its number of words (or addresses) and by the size (in bits) of each
word. These values are commonly called the depth and the width of the memory respectively.

We can also express the capacity of a memory device in bits or in bytes; that is to say, the number of bits
or the number of bytes contained in the memory.
• Capacity in bits = Depth × Width
• Capacity in bytes = Depth × Width / 8

Therefore, the memory above, which contains 8 words of 16 bits, has:
• a capacity of 128 bits (8 × 16).
• a capacity of 16 bytes (8 × 16 / 8).

Chapter 3 – Microprocessor Systems 3/22

8 words

16 bits
Addresses

David Bouchet – Computer Architecture – EPITA – S2

2. Main Types of Memory Devices

2.1. Random-Access Memory (RAM)

RAM devices have the following main characteristics:
• They are volatile: data is lost whenever the power is switched off.
• Data can be either read or written.

RAM devices come in a wide variety of classes. We will touch on the two main ones only.

2.1.1. Static Random-Access Memory (SRAM)

SRAM devices use flip-flops as storage locations.

They are very fast and low-powered but unfortunately still expensive.

The cache memory of a computer is usually made up of SRAM devices.

2.1.2. Dynamic Random-Access Memory (DRAM)

DRAM devices use the capacitive effect of transistors as storage locations.

The main drawback of this storage technology is that data can be stored for a short time only. Therefore,
the electric charge has to be refreshed periodically, which requires a dedicated circuit.

However, the big advantage of dynamic memory is its high density, which is much higher than that of
static memory. That is why dynamic memory is much cheaper than static memory.

The main memory of a computer is usually made up of DRAM devices.

2.2. Read-Only Memory (ROM)

ROM devices have the following main characteristics:
• They are non-volatile; data is not lost whenever the power is switched off.
• Data can be read but not modified.

The BIOS (Basic Input Output System) of a computer is usually stored in a ROM device.

Chapter 3 – Microprocessor Systems 4/22

David Bouchet – Computer Architecture – EPITA – S2

ROM devices also come in a wide variety of classes. We will touch on the main ones only. As we said
previously, a ROM device can be read from but not written to; they are programmed by the manufacturer.
However, some subclasses of ROM can be written to by specific electronic devices.

2.2.1. Programmable Read-Only Memory (PROM)

PROM devices can be written to only once. Their content cannot be erased. Once they have been pro-
grammed, they can be used as ROM devices.

2.2.2. Erasable Programmable Read-Only Memory (EPROM)

EPROM devices can be programmed and erased a great number of times. Once they have been pro-
grammed, they can be used as ROM devices.

The two main subclasses of EPROM are :

• UV-EPROM (UV Erasable Programmable Read-Only Memory): This kind of memory can be
erased by being exposed to ultraviolet rays for some time. They are no longer commonly used.

• EEPROM (Electrically Erasable Programmable Read-Only Memory): This kind of memory can
be programmed and erased electrically.

3. The Buses

A memory device has three buses:

3.1. The Address Bus

The address bus is used to contain the address of the memory cell we want to access. It is an input.

If a is the number of wires of the address bus, we can deduce that: depth = 2a.

Chapter 3 – Microprocessor Systems 5/22

David Bouchet – Computer Architecture – EPITA – S2

3.2. The Data Bus

The data bus is used to transfer the data of the memory.

This bus is unidirectional (output) on ROM devices (data can only be read) and bidirectional (input and
output) on RAM devices (data can be either read or written).

If d is the number of wires of the data bus, we can deduce that: width = d.

3.3. The Control Bus

The control bus is used to convey a variety of control signals that synchronize the data exchange between
the memory and the other components. These signals can be either unidirectional or bidirectional and
their number depends on the features of the memory.

In this chapter, we will assume that the control bus will be reduced to the minimum. Therefore, here is
what RAM and ROM devices should look like:

3.3.1. Chip Select (CS)

A ‘chip select’ input can be found on every type of memory device. This input allows activating or deacti-
vating the device. We will call it ‘CS’, but some manufacturers can use different names; for instance ‘CE’,
which stands for ‘chip enable’.

When a memory device is deactivated, it ignores the voltage on its inputs and disconnects its outputs. It
means that the outputs are neither 0 nor 1; they are in a third state called ‘high impedance’. We can con-
sider that the device is completely disconnected.

3.3.2. Write Enable (WE)

A ‘write enable’ input can be found on every RAM device but does not exist on ROM devices. This input
allows selecting the access mode of the device (read or write mode). We will call it ‘WE’, but some manu-
facturers can use different names; for instance ‘R/W’, which stands for ‘Read / Write’.

Chapter 3 – Microprocessor Systems 6/22

David Bouchet – Computer Architecture – EPITA – S2

4. Connecting Memory Devices

Memory devices can be connected together in order to enlarge their capacity, their width and their depth.
These kinds of connections can be found on SIMM and DIMM memory modules.

4.1. Connecting Memory Devices in Parallel

Connecting memory devices in parallel enlarges the width of the memory, that is, the size of the binary
words. Therefore, this type of connection enlarges the data bus.

For instance, let us take two RAM devices with a 10-bit address bus and a 4-bit data bus each. Both of
them have a depth of 1,024 (210) and a width of 4.

6 4

F 8

1 B

⁞ ⁞

C A

E 1

C 5

D 9

We can see these two 4-bit-wide memories as only one 8-bit-wide memory. Practically speaking, this can
be achieved by connecting the devices as shown below:

Chapter 3 – Microprocessor Systems 7/22

1,024 words
(1 Ki words)

4 bits 4 bits

8 bits

David Bouchet – Computer Architecture – EPITA – S2

It is noteworthy that:
• The address buses of the internal memories are connected. They make up the address bus of the exter-

nal memory.
• The control buses of the internal memories are connected. They make up the control bus of the exter-

nal memory.
• The data buses of the internal memories are not connected. They are placed side by side and make up

the data bus of the external memory.
• Both internal memories have to be activated at the same time in order to form a complete 8-bit value

on the data bus of the external memory.

4.2. Connecting Memory Devices in Series

Connecting memory devices in series enlarges the depth of the memory, that is, the number of words.
Therefore, this type of connection enlarges the address bus.

For instance, let us take two RAM devices with a 7-bit address bus and an 8-bit data bus each. Both of
them have a depth of 128 (27) and a width of 8.

4D

3E

56

⁞

A2

54

B8

12

C9

21

⁞

FC

00

18

We can see these two memories (with a depth of 128 each) as only one memory (with a depth of 256).

Chapter 3 – Microprocessor Systems 8/22

8 bits

128 words

128 words

256 words

David Bouchet – Computer Architecture – EPITA – S2

 Practically speaking, this can be achieved by connecting the devices as shown below:

It is noteworthy that:
• The data buses of the internal memories are connected. They make up the data bus of the external

memory.
• Apart from the CS inputs, the control buses of the internal memories are connected. They make up the

control bus of the external memory.
• The address buses of the internal memories are connected. They make up the least significant address

bits of the external memory.
• The external memory needs an additional address bit in order to get the 256 addresses. This bit can be

used with a multiplexer to select one or the other internal memory.
• The internal memories must not be activated at the same time in order to avoid access conflicts on the

data bus. The CS of the external memory is sent to one of the internal memories while the other one is
deactivated.

When the CS of the external memory is 1:
• If A7 = 0 then CS0 = 1 and CS1 = 0 → the memory device number 1 is activated.
• If A7 = 1 then CS0 = 0 and CS1 = 1 → the memory device number 2 is activated.

When the CS of the external memory is 0, every internal memory is deactivated.

Chapter 3 – Microprocessor Systems 9/22

David Bouchet – Computer Architecture – EPITA – S2

4.3. Connecting Memory Devices in Parallel and Series

We can also connect memory devices in parallel and series at the same time. For instance, let us take four
RAM devices with a 15-bit address bus and an 8-bit data bus each. All of them have a depth of 32,768
(215) and a width of 8.

4D 5F

3E 28

56 74

⁞ ⁞

A2 B6

54 2C

B8 63

12 48

C9 1A

21 2B

⁞ ⁞

FC C3

00 27

18 F4

We can see these four memories as only one memory with a depth of 65,536 and a width of 16.

The two memories at the top of the diagram have to be activated at the same time in order to form a com-
plete 16-bit value (for instance, the address 0 contains 4D5F16).

The same goes for the two memories at the bottom of the diagram (for instance, the address 65,535 con-
tains 18F416).

When the two top memories are active, the two bottom memories have to be inactive or vice versa, failing
which, two different values will be sent to the data bus, which will lead to access conflicts.

Chapter 3 – Microprocessor Systems 10/22

32,768 words
(32 Ki words)

65,536 words
(64 Ki words)

32,768 words
(32 Ki words)

8 bits8 bits

16 bits

David Bouchet – Computer Architecture – EPITA – S2

 Practically speaking, this can be achieved by connecting the devices as shown below:

We can easily identify the parallel and series connections:
• Memories 1 and 2 are in parallel. They have to be active at the same time (they have the same CS).
• Memories 3 and 4 are in parallel. They have to be active at the same time (they have the same CS).
• Memories 1 and 3 are in series. They must not be active at the same time.
• Memories 2 and 4 are in series. They must not be active at the same time.

When the CS of the external memory is 1:
• If A15 = 0 then CS0 = 1 and CS1 = 0 → the memory devices number 1 and 2 are activated.
• If A15 = 1 then CS0 = 0 and CS1 = 1 → the memory devices number 3 and 4 are activated.

When the CS of the external memory is 0, every internal memory is deactivated.

Chapter 3 – Microprocessor Systems 11/22

David Bouchet – Computer Architecture – EPITA – S2

III. Address Decoding

1. Introduction

The purpose of the address decoding is to allow the microprocessor to communicate with more than one
device.

In order to illustrate the main techniques of address decoding, we will go through a practical example.

Let us assume that a microprocessor needs to communicate with a ROM device, a RAM device and two
peripheral devices (P1 and P2).

Device Address Bus (bits) Data Bus (bits) Capacity (bytes)

Microprocessor 20 8 1 Mi

ROM 16 8 64 Ki

RAM 15 8 32 Ki

P1 10 8 1 Ki

P2 4 8 16

The microprocessor communicates with the devices through the data bus, the address bus and the control
bus. The address decoding requires an address decoder.

Chapter 3 – Microprocessor Systems 12/22

David Bouchet – Computer Architecture – EPITA – S2

The outputs of the address decoder are the CS signals for all the devices. Its inputs are the address bus and
the AS signal. The AS signal is generated by the microprocessor – it is part of its control bus – and AS
stands for ‘Address Strobe’. This signal is active (AS = 1) when the address on the address bus of the mi-
croprocessor is valid. Therefore, when it is inactive (AS = 0), none of the devices should be selected. This
is why the address decoder has to take the AS signal into account.

Every device that needs to communicate with the microprocessor has to have a ‘chip select’ input because
the data bus can be accessed by only one device at a time. Otherwise, access conflicts will occur.

The microprocessor uses its address bus to select a device.

Address decoding is the method of generating CS signals from the address bus of the microproces-
sor; that is to say, a method of selecting a device from an address value.

The address decoder generates the CS signals for all the devices according to the value of the address.
The value of the address is decoded so that the right device is selected.

There are several address-decoding techniques. So we will limit ourselves to two techniques: the linear
address decoding and the block address decoding. That will be enough to grasp the key principles of
address decoding.

Let us start by examining the common points of these two techniques.

The address bus is split into two sections:
• The most significant bits are used to generate the CS signals for all the devices.
• The least significant bits are used to select the address of a device.

In some configurations (number of devices, size of the address bus, etc.), some bits of the address bus
may be unused. For the time being, these bits will be set to zero.

Chapter 3 – Microprocessor Systems 13/22

David Bouchet – Computer Architecture – EPITA – S2

We can now specify the numbers of lines for the different address buses:

• The least significant address bits of the microprocessor are connected to the address buses of the dif-
ferent devices.

• The most significant address bits of the microprocessor are the inputs of the address decoder. They are
called ‘device-selection bits’ and their number depends on which address-decoding technique is used.

2. Linear Address Decoding

The key principle of the linear decoding is to pair one address bit with one device (starting from the most
significant bit).

Therefore, in our example, four devices require four device-selection bits: A19, A18, A17 and A16. Each
of these bits has to be associated with a device. Out of context, the choice to associate a bit with one de-
vice or another is arbitrary. Designers will make a choice according to their needs.

Address Bit Device

A16 ROM ← When A16 is 1, the ROM has to be activated.

A17 RAM ← When A17 is 1, the RAM has to be activated.

A18 P1 ← When A18 is 1, P1 has to be activated.

A19 P2 ← When A19 is 1, P2 has to be activated.

Chapter 3 – Microprocessor Systems 14/22

David Bouchet – Computer Architecture – EPITA – S2

2.1. The Address Decoder

A linear address decoder is very simple. The CS input of a device has to be set to 1 when its associated
device-selection bit is 1. Also, as we have previously said, when the value on the address bus is invalid
(AS = 0), none of the devices should be activated.

CSROM = AS.A16
CSRAM = AS.A17
CSP1 = AS.A18
CSP2 = AS.A19

2.2. The Memory Map

A memory map is a representation of the memory space. It shows the location of the devices, that is to
say, all the addresses that can be used by the microprocessor to access the different devices.

Therefore, we need to determine the lowest and highest addresses of each device in the memory space.

To achieve this, we have to determine the most significant address bits (the device-selection bits) and the
least significant address bits (the address of the selected device) of the microprocessor for each device.
Any unused address bits will be set to 0.

Chapter 3 – Microprocessor Systems 15/22

David Bouchet – Computer Architecture – EPITA – S2

Take the ROM for instance:
• A16 is set to 1 to select the ROM device.
• A17, A18 and A19 are set to 0 to deactivate all the other devices.
• To obtain its lowest address, its 16 address bits are set to 0.
• To obtain its highest address, its 16 address bits are set to 1.

Here is what the memory map should look like:

ROM (lowest): 0001 0000 0000 0000 00002 = 1000016

ROM (highest): 0001 1111 1111 1111 11112 = 1FFFF16

RAM (lowest): 0010 0000 0000 0000 00002 = 2000016

RAM (highest): 0010 0111 1111 1111 11112 = 27FFF16

P1 (lowest): 0100 0000 0000 0000 00002 = 4000016

P1 (highest): 0100 0000 0011 1111 11112 = 403FF16

P2 (lowest): 1000 0000 0000 0000 00002 = 8000016

P2 (highest): 1000 0000 0000 0000 11112 = 8000F16

For instance, when the microprocessor sends the value 207F216 to its address bus, the address 7F216 of the
RAM is selected.

Address bus of the microprocessor
A19
P2

A18
P1

A17
RAM

A16
ROM

A15 A14:0

207F2 → 0 0 1 0 0 000 0111 1111 0010

↓
The RAM device

is selected

↓
Unused

bit

↓
Address bus of the RAM :

7F2

2.3. Conclusion

Here are some aspects of the linear address decoding:
• It can be built easily: the address decoder is a very simple combinational circuit.
• The number of devices that can be connected is extremely limited: using one bit per device is not the

best option.
• There is no protection against access conflicts.

Chapter 3 – Microprocessor Systems 16/22

David Bouchet – Computer Architecture – EPITA – S2

Notes:
The main drawback of the linear-decoding technique is that several devices can be activated at the same
time, which could lead to access conflicts and may cause severe damage.

Therefore, the address decoder should be changed so that only one device can be selected at a time. When
the address decoder activates a device, it should deactivate all the other devices. In other words, the CS
input of a device should be activated only when its device-selection bit is 1 and those of the other devices
are 0.

CSROM = AS.A19.A18.A17.A16
CSRAM = AS.A19.A18.A17.A16
CSP1 = AS.A19.A18.A17.A16
CSP2 = AS.A19.A18.A17.A16

3. Block Address Decoding

The block decoding address splits the memory space into several equal-sized blocks. Each block consists
of a combination of device-selection bits. The latter are always the most significant address bits.

For instance:
• 1 device-selection bit makes up 2 blocks.
• 2 device-selection bits make up 4 blocks.
• n device-selection bits make up 2n blocks.

1 bit A19 2 bits A19:18

Block 0 0
Block 0 00

Block 1 01

Block 1 1
Block 2 10

Block 3 11

In our example, the largest device is the ROM with 16 address lines. Since the microprocessor has 20 ad-
dress lines, four of them remain available for the selection. Therefore, there are four possibilities:
• 1 device-selection bit → 2 blocks of 512 KiB.
• 2 device-selection bits → 4 blocks of 256 KiB.
• 3 device-selection bits → 8 blocks of 128 KiB.
• 4 device-selection bits → 16 blocks of 64 KiB.

With the block address decoding, one block (a combination of device-selection bits) is paired with one
device. So, the four devices require at least four blocks; that is to say, at least two device-selection bits.
The number of blocks can be greater than or equal to the number of devices. Some blocks can be unused.

Chapter 3 – Microprocessor Systems 17/22

David Bouchet – Computer Architecture – EPITA – S2

Now, each device has to be paired with a block. Out of context, the choice to associate a block with one
device or another is arbitrary. Designers will make a choice according to their needs. Unused blocks can
be reserved for future expansion.

We will choose to split the memory space into eight blocks as shown below:

Block A19 A18 A17 Device

0 0 0 0 ROM

1 0 0 1 RAM

2 0 1 0 P1

3 0 1 1 P2

4 1 0 0 unused block

5 1 0 1 unused block

6 1 1 0 unused block

7 1 1 1 unused block

3.1. The Address Decoder

When the value of the device-selection bits matches the combination associated with a particular device,
this device should be activated. Also, as we have previously said, when the value on the address bus is in-
valid (AS = 0), none of the devices should be activated.

CSROM = AS.A19.A18.A17
CSRAM = AS.A19.A18.A17
CSP1 = AS.A19.A18.A17
CSP2 = AS.A19.A18.A17

It is noteworthy that this address decoder is actually a demultiplexer (3 selected lines, 8 outputs).

Chapter 3 – Microprocessor Systems 18/22

David Bouchet – Computer Architecture – EPITA – S2

Here is what the circuit diagram should look like:

3.2. The Memory Map

We need to determine the lowest and highest addresses of each device in the memory space.

To achieve this, we have to determine the most significant address bits (the device-selection bits) and the
least significant address bits (the address of the selected device) of the microprocessor for each device.
Any unused address bits will be set to 0.

Take the ROM for instance:
• A16 is set to 0 because it is unused.
• A17, A18 and A19 are set to 0 to select the ROM device.
• To obtain its lowest address, its 16 address bits are set to 0.
• To obtain its highest address, its 16 address bits are set to 1.

Chapter 3 – Microprocessor Systems 19/22

David Bouchet – Computer Architecture – EPITA – S2

Here is what the memory map should look like:

ROM (lowest): 0000 0000 0000 0000 00002 = 0000016

ROM (highest): 0000 1111 1111 1111 11112 = 0FFFF16

RAM (lowest): 0010 0000 0000 0000 00002 = 2000016

RAM (highest): 0010 0111 1111 1111 11112 = 27FFF16

P1 (lowest): 0100 0000 0000 0000 00002 = 4000016

P1 (highest): 0100 0000 0011 1111 11112 = 403FF16

P2 (lowest): 0110 0000 0000 0000 00002 = 6000016

P2 (highest): 0110 0000 0000 0000 11112 = 6000F16

For instance, when the microprocessor sends the value 403A616 to its address bus, the address 3A616 of P1
is selected.

Address bus of the microprocessor

403A6 → 010 0000000 11 1010 0110

↓
P1 is

selected

↓
Unused

bits

↓
Address bus of P1:

3A6

3.3. Conclusion

Here are some aspects of the block address decoding:
• It can be built easily: the address decoder is a demultiplexer.
• In comparison with the linear address decoding, more devices can be connected.
• The greater the number of blocks, the smaller the size of a device (and vice versa).
• Access conflicts cannot occur.

Chapter 3 – Microprocessor Systems 20/22

David Bouchet – Computer Architecture – EPITA – S2

4. Memory Mirroring and Redundant Images

When some address bits of the microprocessor are unused, the memory of a device can be found at differ-
ent places in the memory space.

For instance, the ROM used in the previously block-decoding configuration has the following lowest and
highest addresses:
ROM (lowest): 0000 0000 0000 0000 00002 = 0000016

ROM (highest): 0000 1111 1111 1111 11112 = 0FFFF16

We can easily notice that A16 is unused.

So far, we have set the unused bits to 0, but we can also set them to 1. Whatever the value of these bits,
the selected device and the selected address are the same.

For instance, if we set A16 to 1:
ROM (lowest): 0001 0000 0000 0000 00002 = 1000016

ROM (highest): 0001 1111 1111 1111 11112 = 1FFFF16

Therefore, the ROM can also be found between the addresses 1000016 and 1FFFF16. It is a redundant im-
age of the ROM.

To select the address ABCD16 of the ROM, the microprocessor can send either 0ABCD16 or 1ABCD16 to
the address bus.

Here is what the memory map should look like if we represent the two redundant images of the ROM:

Chapter 3 – Microprocessor Systems 21/22

David Bouchet – Computer Architecture – EPITA – S2

We can calculate the number of images for each device.

The number of images is the number of combinations that can be made with the unused address
bits of the microprocessor.

Unused bits = 20 address bits – 3 device-selection bits – Address bits of a device

ROM: 20 – 3 – 16 = 1 unused bit → 21 = 2 images.
RAM: 20 – 3 – 15 = 2 unused bits → 22 = 4 images.
P1: 20 – 3 – 10 = 7 unused bits → 27 = 128 images.
P2: 20 – 3 – 4 = 13 unused bits → 213 = 8,192 images.

Here is what the memory map should look like:

Chapter 3 – Microprocessor Systems 22/22

	I. Introduction
	II. Memory Devices
	1. Definitions
	2. Main Types of Memory Devices
	2.1. Random-Access Memory (RAM)
	2.1.1. Static Random-Access Memory (SRAM)
	2.1.2. Dynamic Random-Access Memory (DRAM)

	2.2. Read-Only Memory (ROM)
	2.2.1. Programmable Read-Only Memory (PROM)
	2.2.2. Erasable Programmable Read-Only Memory (EPROM)

	3. The Buses
	3.1. The Address Bus
	3.2. The Data Bus
	3.3. The Control Bus
	3.3.1. Chip Select (CS)
	3.3.2. Write Enable (WE)

	4. Connecting Memory Devices
	4.1. Connecting Memory Devices in Parallel
	4.2. Connecting Memory Devices in Series
	4.3. Connecting Memory Devices in Parallel and Series

	III. Address Decoding
	1. Introduction
	2. Linear Address Decoding
	2.1. The Address Decoder
	2.2. The Memory Map
	2.3. Conclusion

	3. Block Address Decoding
	3.1. The Address Decoder
	3.2. The Memory Map
	3.3. Conclusion

	4. Memory Mirroring and Redundant Images

